import numpy as np import datetime as dt import glob as gb import netCDF4 as nc import pickle as pk import sys import fvcom_river as fr wrf_forecast_out_dir = sys.argv[1] end_date = dt.datetime.strptime(sys.argv[2],'%Y-%m-%d') no_miss_loops = 4 # Load the river model with open('river_model.pk1','rb') as f: river_dict = pk.load(f) start_date = end_date for this_river in river_dict.values(): if hasattr(this_river, 'catchment_precipitation'): this_river_update = np.max(this_river.catchment_precipitation[0]) if this_river_update < start_date: start_date = this_river_update if start_date == end_date: print('Already up to date') else: missing_dates = np.asarray([start_date + dt.timedelta(days=int(this_ind)) for this_ind in np.arange(0, (end_date - start_date).days + 1)]) for this_missing_loop in np.arange(0, no_miss_loops): new_missing_dates = [] for this_date in missing_dates: if this_missing_loop > 0: print('Trying again to fill for {}'.format(this_date)) else: print(this_date) this_date_m1 = this_date - dt.timedelta(days=int(this_missing_loop)) this_date_str = this_date_m1.strftime('%Y-%m-%d') potential_files = gb.glob('{}/{}/wrfout_d03*'.format(wrf_forecast_out_dir, this_date_str)) try: this_wrf_nc = nc.Dataset(potential_files[-1], 'r') wrf_date_str_raw = this_wrf_nc.variables['Times'][:] wrf_date_str = np.asarray([b''.join(this_str) for this_str in wrf_date_str_raw]) wrf_dt = np.asarray([dt.datetime.strptime(this_str.decode('utf-8'),'%Y-%m-%d_%H:%M:%S') for this_str in wrf_date_str]) wrf_dt_date = np.asarray([this_dt.date() for this_dt in wrf_dt]) date_match = wrf_dt_date == this_date.date() forecast_data = {'times': wrf_dt[date_match], 'RAINNC': this_wrf_nc.variables['RAINNC'][date_match,:,:], 'T2': this_wrf_nc.variables['T2'][date_match,:,:]} this_wrf_nc.close() for this_river_name, this_river in river_dict.items(): if hasattr(this_river, 'addToSeries'): this_rain = np.sum(np.sum(forecast_data['RAINNC']*this_river.wrf_catchment_factors, axis=2), axis=1) this_river.addToSeries('catchment_precipitation', this_rain, forecast_data['times'], override=True) this_temp = np.zeros(len(forecast_data['times'])) for i in range(0, len(forecast_data['times'])): this_temp[i] = np.average(forecast_data['T2'][i,:,:], weights=this_river.wrf_catchment_factors) this_river.addToSeries('catchment_temp', this_temp, forecast_data['times'], override=True) if hasattr(this_river, 'river_obj'): this_river.catchment_precipitation = this_river.river_obj.catchment_precipitation except: new_missing_dates.append(this_date) missing_dates = new_missing_dates[:] with open('river_model.pk1','wb') as f: pk.dump(river_dict, f, pk.HIGHEST_PROTOCOL)