Commit 05d2e399 authored by Pierre Cazenave's avatar Pierre Cazenave

Create a new function whose job is to take an existing FVCOM model restart...

Create a new function whose job is to take an existing FVCOM model restart file and change the temperature and salinity values for values extracted from an appropriate POLCOMS model result file.

The POLCOMS data is read in as a 4D array (y, x, z, t) and is interpolated onto the FVCOM sigma layers. This provides the correct number of vertical levels which are then interpolated onto the FVCOM horizontal unstructured grid. This order is chosen because interpolating onto the horizontal grid first would dramatically increase the number of interpolations of the vertical which would be necessary. Initial development of the function revealed that the interpolation returns NaNs outside the POLCOMS domain: since it is likely the FVCOM domain is both higher resolution and more faithful to the coastline, a simple extrapolation is performed to remove all the NaNs (based on the nearest existing finite value to a given NaN location).

Once the data have been interpolated (and extrapolated), an existing NetCDF restart file is opened and its contents replicated into a new NetCDF file (appended with _polcoms.nc). Only the "temp" and "salinity" variables are changed with the interpolated 3D arrays (we lose a dimension because the FVCOM grid is unstructured).
parent b35b2959
function replace_FVCOM_restart_vars(Mobj, polcoms_ts, polcoms_z, start_date, fv_restart, varlist)
% Use an FVCOM restart file to seed a model run with spatially varying
% versions of otherwise constant variables (temperature and salinity only
% for the time being).
%
% function replace_FVCOM_restart_vars(Mobj, polcoms_ts, polcoms_z, ...
% start_date, fv_restart, varlist)
%
% DESCRIPTION:
% FVCOM does not yet support spatially varying temperature and salinity
% inputs as initial conditions. To avoid having to run a model for a
% long time in order for temperature and salinity to settle within the
% model from the atmospheric and boundary forcing, we can use a restart
% file to cheat. If we run a model for a week or so (until the
% hydrodynamics has stabilised, we can use the restart file generated
% from that run as the basis for a new run, except we replace the
% currently computed temperature and salinity and replace them with data
% interpolated from another source (in this case, POLCOMS).
%
% INPUT:
% Mobj = MATLAB mesh structure which must contain:
% - Mobj.siglayz - sigma layer depths for all model
% nodes.
% - Mobj.lon, Mobj.lat - node coordinates (long/lat).
% polcoms_ts = POLCOMS NetCDF file in which 4D variables of temperature
% and salinity (called 'ETW' and 'x1X') exist. Their shape should be (y,
% x, sigma, time).
% polcoms_z = POLCOMS NetCDF file in which 4D variables of bathymetry
% and sigma layer thickness can be found. They should be called 'depth'
% and 'pdepth' respectively.
% start_date = Gregorian start date array (YYYY, MM, DD, hh, mm, ss).
% fv_restart = full path to the FVCOM restart file.
% varlist = cell array of variables to extract from the POLCOMS
% NetCDF files (polcoms_ts only, pdepth and depth will be extracted from
% polcoms_z).
%
% OUTPUT:
% NetCDF file in which the temperature and salinity variables have been
% replaced with the POLCOMS versions. The file name is the input restart
% file name appended _polcoms.nc.
%
% EXAMPLE USAGE
% replace_FVCOM_restart_vars(Mobj, '/tmp/pc_ts.nc', '/tmp/pc_z.nc', ...
% '2006-01-01 00:00:00', '/tmp/fvcom_restart.nc', ...
% {'lon', 'lat', 'ETW', 'x1X', 'time'})
%
% Author(s):
% Pierre Cazenave (Plymouth Marine Laboratory)
%
% Revision history
% 2013-01-28 First version (based on initial_tsobc.m).
%
%==========================================================================
subname = 'replace_FVCOM_restart_vars';
global ftbverbose;
if ftbverbose
fprintf('\n')
fprintf(['begin : ' subname '\n'])
end
%--------------------------------------------------------------------------
% Extract the POLCOMS data specified in varlist
%--------------------------------------------------------------------------
if ftbverbose
fprintf('%s : read POLCOMS data... ', subname)
end
nc = netcdf.open(polcoms_ts, 'NOWRITE');
for var=1:numel(varlist)
getVar = varlist{var};
varid_pc = netcdf.inqVarID(nc, getVar);
data = netcdf.getVar(nc, varid_pc, 'single');
pc.(getVar).data = double(data);
% Try to get some units (important for the calculation of MJD).
try
units = netcdf.getAtt(nc,varid_pc,'units');
catch err
units = [];
end
pc.(getVar).units = units;
end
clear data getVar varid_pc var
netcdf.close(nc)
% Extract the bathymetry ('pdepth' is cell thickness, 'depth' is cell
% centre depth).
nc = netcdf.open(polcoms_z, 'NOWRITE');
varid_pc = netcdf.inqVarID(nc, 'depth');
pc.depth.data = double(netcdf.getVar(nc, varid_pc, 'single'));
try
pc.depth.units = netcdf.getAtt(nc, varid_pc, 'units');
catch err
pc.depth.units = [];
end
varid_pc = netcdf.inqVarID(nc, 'pdepth');
pc.pdepth.data = double(netcdf.getVar(nc, varid_pc, 'single'));
try
pc.pdepth.units = netcdf.getAtt(nc, varid_pc, 'units');
catch err
pc.pdepth.units = [];
end
netcdf.close(nc)
% Data format:
%
% pc.ETW.data and pc.x1X.data are y, x, sigma, time
%
[ny, nx, ~, ~] = size(pc.ETW.data);
% Number of sigma layers.
[fn, fz] = size(Mobj.siglayz);
% Make rectangular arrays for the nearest point lookup.
[lon, lat] = meshgrid(pc.lon.data, pc.lat.data);
% Convert the POLCOMS times to Modified Julian Day (this is a very ugly).
pc.time.yyyymmdd = strtrim(regexp(pc.time.units, 'since', 'split'));
pc.time.strtime = regexp(pc.time.yyyymmdd{end}, '-', 'split');
% This new version of the time has the year in a weird format (yr.#). We
% thus need to split it again to get the decimal year (post-2000 only?).
pc.time.strtimeyr = regexp(pc.time.strtime, '\.', 'split');
pc.time.yyyymmdd = str2double([pc.time.strtimeyr{1}(2), pc.time.strtime{2:3}]);
pc.time.yyyymmdd(1) = pc.time.yyyymmdd(1) + 2000; % add full year.
Mobj.ts_times = greg2mjulian(pc.time.yyyymmdd(1), pc.time.yyyymmdd(2), pc.time.yyyymmdd(3), 0, 0, 0) + (pc.time.data / 3600 / 24);
% Given our intput time (in start_date), find the nearest time
% index for the POLCOMS data.
stime = greg2mjulian(start_date(1), start_date(2), ...
start_date(3), start_date(4), ...
start_date(5), start_date(6));
[~, tidx] = min(abs(Mobj.ts_times - stime));
if ftbverbose
fprintf('done.\n')
end
%--------------------------------------------------------------------------
% Interpolate the regularly gridded POLCOMS data onto the FVCOM grid
% (vertical grid first).
%--------------------------------------------------------------------------
if ftbverbose
fprintf('%s : interpolate POLCOMS onto FVCOM''s vertical grid... ', subname)
end
% Preallocate the output arrays
pctempz = nan(nx, ny, fz);
pcsalz = nan(nx, ny, fz);
for xi = 1:nx
% For the parallel loop, get all the y and z dimension data for the
% current x position (temperature, salinity and depth).
% N.B. The POLCOMS data is stored y, x, z, t (first two dimensions the
% wrong way around).
xtemp = squeeze(pc.ETW.data(:, xi, :, tidx));
xsalt = squeeze(pc.x1X.data(:, xi, :, tidx));
xdepth = squeeze(pc.depth.data(:, xi, :, tidx));
% Preallocate the arrays for the inner loop
ytemp = nan(ny, fz);
ysalt = nan(ny, fz);
for yi = 1:ny
% First things first, check we're within the POLCOMS domain
% (assuming anything beyond a maximum depth of 20km is outside the
% domain).
if xdepth(yi, end) < -20000 % use deepest depth
continue
end
% Find the nearest sigma layer z values from the unstructured grid.
[md, mi] = min(sqrt((Mobj.lon - lon(xi, yi)).^2 + (Mobj.lat - lat(xi, yi)).^2));
% Skip data point if the closest FVCOM node is more than 10 minutes
% away.
if md > 10 / 60
continue
else
% Use the FVCOM node's sigma depths to interpolate this POLCOMS
% position's temperature and salinity data.
% Get the FVCOM depths closest to this POLCOMS grid position.
tfz = Mobj.siglayz(mi, :);
% Now get the POLCOMS depth at this node for the time index
% identified above.
tpz = xdepth(yi, :);
ytemp(yi, :) = interp1(tpz, xtemp(yi, :), tfz, 'linear', 'extrap');
ysalt(yi, :) = interp1(tpz, xsalt(yi, :), tfz, 'linear', 'extrap');
end
end
pctempz(xi, :, :) = ytemp;
pcsalz(xi, :, :) = ysalt;
end
% Tidy up the namespace a bit.
clear ytemp ysalt tfz tpz md mi xtemp xsalt xdepth xi yi zi
if ftbverbose
fprintf('done.\n')
end
%--------------------------------------------------------------------------
% Now we have vertically interpolated POLCOMS data, we can interpolate each
% sigma layer onto the FVCOM unstructured grid ready to write out to
% NetCDF. We'll use the triangular interpolation in MATLAB with the natural
% method (gives pretty good results, at least qualitatively).
%--------------------------------------------------------------------------
if ftbverbose
fprintf('%s : interpolate POLCOMS onto FVCOM''s horizontal grid... ', subname)
end
fvtemp = nan(fn, fz);
fvsalt = nan(fn, fz);
for zi = 1:fz
% Set up the interpolation object.
ft = TriScatteredInterp(lon(:), lat(:), reshape(pctempz(:, :, zi), [], 1), 'natural');
fs = TriScatteredInterp(lon(:), lat(:), reshape(pcsalz(:, :, zi), [], 1), 'natural');
% Interpolate temperature and salinity onto the unstructured grid.
fvtemp(:, zi) = ft(Mobj.lon, Mobj.lat);
fvsalt(:, zi) = fs(Mobj.lon, Mobj.lat);
end
% Unfortunately, TriScatteredInterp won't extrapolate, returning instead
% NaNs outside the original data's extents. So, for each NaN position, find
% the nearest non-NaN value and use that instead. The order in which the
% NaN-nodes are found will determine the spatial pattern of the
% extrapolation.
% We can assume that all layers will have NaNs in the same place
% (horizontally), so just use the surface layer (1) for the identification
% of NaNs. Also store the finite values so we can find the nearest real
% value to the current NaN node and use its temperature and salinity
% values.
fvidx = 1:fn;
fvnanidx = fvidx(isnan(fvtemp(:, 1)));
fvfinidx = fvidx(~isnan(fvtemp(:, 1)));
for ni = 1:length(fvnanidx);
% Current position
xx = Mobj.lon(fvnanidx(ni));
yy = Mobj.lat(fvnanidx(ni));
% Find the nearest non-nan temperature and salinity value.
[~, di] = min(sqrt((Mobj.lon(fvfinidx) - xx).^2 + (Mobj.lat(fvfinidx) - yy).^2));
% Replace the temperature and salinity values at all depths at the
% current NaN position with the closest non-nan value.
fvtemp(fvnanidx(ni), :) = fvtemp(fvfinidx(di), :);
fvsalt(fvnanidx(ni), :) = fvsalt(fvfinidx(di), :);
end
if ftbverbose
fprintf('done.\n')
end
%--------------------------------------------------------------------------
% Get the restart data and replace with the interpolated data.
%--------------------------------------------------------------------------
if ftbverbose
fprintf('%s : export interpolated data to NetCDF:\n', subname)
end
nc = netcdf.open(fv_restart, 'NOWRITE');
[pp, nn, ee] = fileparts(fv_restart);
ncout = netcdf.create(fullfile(pp, [nn, '_polcoms', ee]), 'clobber');
% ncout = netcdf.create(fullfile('/tmp/pica/', [nn, '_polcoms', ee]), 'clobber');
[numdims, numvars, numglobatts, unlimdimID] = netcdf.inq(nc);
% Define the dimensions for all variables.
dimid = nan(numdims, 1);
dimnames = cell(numdims, 1);
dimlengths = nan(numdims, 1);
for ii = 1:numdims
[dimname, dimlen] = netcdf.inqDim(nc, ii - 1);
if ii ~= unlimdimID + 1 % NetCDF indices start at zero
dimid(ii) = netcdf.defDim(ncout, dimname, dimlen);
else
dimid(ii) = netcdf.defDim(ncout, dimname, netcdf.getConstant('NC_UNLIMITED'));
end
dimnames{ii} = dimname;
dimlengths(ii) = dimlen;
end
% Now define the variables and attributes.
for ii = 1:numvars
% Find name of the current variable.
[varname, xtype, varDimIDs, varAtts] = netcdf.inqVar(nc, ii - 1);
% Create the variables.
varid = netcdf.defVar(ncout, varname, xtype, varDimIDs);
% Get each attribute and add it to the current variable.
for j = 1:varAtts
attname = netcdf.inqAttName(nc, varid, j - 1);
attval = netcdf.getAtt(nc, varid, attname);
netcdf.putAtt(ncout, varid, attname, attval);
end
end
% Do the global attributes
for ii = 1:numglobatts
% Find the current global attribute's name and value.
gattname = netcdf.inqAttName(nc, netcdf.getConstant('NC_GLOBAL'), ii - 1);
gattval = netcdf.getAtt(nc, netcdf.getConstant('NC_GLOBAL'), gattname);
% Put that back into the output NetCDF file.
netcdf.putAtt(ncout, netcdf.getConstant('NC_GLOBAL'), gattname, gattval);
end
netcdf.endDef(ncout);
% Get the existing data and output to the new NetCDF file, except for
% temperature and salinity, where we replace the values with the
% interpolated POLCOMS data.
for ii = 1:numvars
[varname, ~, varDimIDs, ~] = netcdf.inqVar(nc, ii - 1);
varid = netcdf.inqVarID(nc, varname);
if ftbverbose
fprintf('\tvariable %s... ', varname)
end
% We need the data irrespective of whether we're replacing it or not,
% so grab it outside the if statement below.
data = netcdf.getVar(nc, varid);
% Get the size of the data and the dimension names.
currDimsNames = dimnames(varDimIDs + 1);
currDimsLengths = dimlengths(varDimIDs + 1);
% Find whether we've got an unlimited dimension in this data.
wasUnlimited = -1;
for jj = varDimIDs
if numel(unlimdimID) > 1
error('Do not currently support multiple unlimited dimensions.')
end
if strcmpi(dimnames(jj + 1), dimnames(unlimdimID + 1))
wasUnlimited = jj;
end
end
% Since the restart file has a number of time values, we'll ramp up
% the temperature from some constant to the actual value over the
% time steps. So, we need to know how many time steps we actually
% have.
% Get the dimension data ready for the temperature and salinity arrays.
tIdx = strncmp(dimnames(unlimdimID + 1), currDimsNames, length(dimnames{unlimdimID + 1}));
% Not sure about the hardcoded strings below...
sIdx = strncmp('siglay', currDimsNames, length(dimnames{unlimdimID + 1}));
nIdx = strncmp('node', currDimsNames, length(dimnames{unlimdimID + 1}));
nt = currDimsLengths(tIdx);
ns = currDimsLengths(sIdx);
nd = currDimsLengths(nIdx);
if strcmpi(varname, 'temp') || strcmpi(varname, 'salinity')
% To make the scaling go from the initial value to the POLCOMS value,
% we need to take the scale the difference between the end members by
% the scaling factor at each time and add to the current time's value.
sfvdata = nan(nd, ns, nt);
ss = 0:1 / (nt - 1):1; % scale from 0 to 1.
startdata = squeeze(data(:, :, 1)); % use the first modelled time step
for tt = 1:nt;
if tt == 1
sfvdata(:, :, 1) = startdata;
else
td = fvtemp - startdata;
sfvdata(:, :, tt) = startdata + (ss(tt) .* td);
end
end
% Replace the values with the scaled interpolated values.
netcdf.putVar(ncout, varid, sfvdata)
else
% We need to check if the dimension is unlimited, and use a start
% and end with netcdf.putVar if it is. This is largely because
% MATLAB can't handle unlimited dimensions in the same way as it
% does finite dimensions.
if wasUnlimited < 0
% We can just dump the entire data without specifying over what
% indices.
netcdf.putVar(ncout, varid, data);
else
% Use the dimension length we extracted above to output the
% data with the valid unlimited dimension format.
netcdf.putVar(ncout, varid, zeros(length(currDimsLengths), 1), currDimsLengths, data);
end
end
if ftbverbose
fprintf('done.\n')
end
end
netcdf.close(nc)
netcdf.close(ncout)
if ftbverbose
fprintf('%s : export complete.\n', subname)
end
if ftbverbose
fprintf(['end : ' subname '\n'])
end
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment