get_CFS_forcing.m 23.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
function data = get_CFS_forcing(Mobj, modelTime, varargin)
% Get the required parameters from CFSv2 products to force FVCOM.
%
% data = get_CFS_forcing(Mobj, modelTime)
%
% DESCRIPTION:
%   Using OPeNDAP, extract the necessary parameters to create an FVCOM
%   forcing file. Requires the air_sea toolbox.
%
% INPUT:
%   Mobj - MATLAB mesh object. Must contain fields:
%       lon, lat    - array of longitude and latitudes.
%       have_lonlat - boolean to signify whether coordinates are spherical
%                   or cartesian.
%   modelTime - Modified Julian Date start and end times
%   varargin - parameter/value pairs
%       - list of variables to extract:
%           'varlist', {'nshf', 'uwnd', 'vwnd'}
%
% OUTPUT:
%   data - struct of the data necessary to force FVCOM. These can be
%   interpolated onto an unstructured grid in Mobj using grid2fvcom.m.
%
% The parameters which can be obtained from the NCEP data are:
%     - u wind component (uwnd)
%     - v wind component (vwnd)
%     - Downward longwave radiation surface (dlwrf)
%     - Net shortwave radiation surface (nswrs = uswrf - dswrf)
%     - Air temperature (air)
%     - Relative humidity (rhum)
%     - Precipitation rate (prate)
%     - Surface pressure (pres or press)
%     - Latent heat flux (lhtfl)
%     - Potential evaporation rate (pevpr)
%
% In addition to these, the momentum flux (tau) is calculated from wind
% data. Precipitation is converted from kg/m^2/s to m/s. Evaporation (Et)
% is calculated from the mean daily latent heat net flux (lhtfl) at the
% surface. Precipitation-evaporation is also created (P_E).
%
% EXAMPLE USAGE:
%   To download the default set of data (see list above):
%
%       forcing = get_CFS_forcing(Mobj, [51345, 51376]);
%
%   To only download wind data:
%
%       forcing = get_CFS_forcing(Mobj, [51345, 51376], 'varlist', {'uwnd', 'vwnd'});
%
% Author(s)
%   Pierre Cazenave (Plymouth Marine Laboratory)
%   Ricardo Torres (Plymouth Marine Laboratory)
%   Rory O'Hara Murray (Marine Scotland Science)
%
% Revision history:
%   2015-05-19 First version based on get_NCEP_forcing.m.
%
%==========================================================================

subname = 'get_CFS_forcing';

global ftbverbose;
if ftbverbose
    fprintf('\nbegin : %s\n', subname)
end

% Parse the input arguments
varlist = [];
if nargin > 2
    for a = 1:2:nargin - 2
        switch varargin{a}
            case 'varlist'
                varlist = varargin{a + 1};
        end
    end
end
if ftbverbose
    fprintf('Extracting CFSv2 data.\n')
end

% Get the extent of the model domain (in spherical)
if ~Mobj.have_lonlat
    error('Need spherical coordinates to extract the forcing data')
else
    % Add a buffer of one grid cell in latitude and two in longitude to
    % make sure the model domain is fully covered by the extracted data.
    [dx, dy] = deal(0.5, 0.5); % approximate CFSv2 resolution in degrees
    extents = [min(Mobj.lon(:)) - (2 * dx), ...
        max(Mobj.lon(:)) + (2 * dx), ...
        min(Mobj.lat(:)) - dy, ...
        max(Mobj.lat(:)) + dy];
end

94
% Create year and month arrays for the period we've been given.
95 96 97 98
[yyyy, mm, dd, HH, MM, SS] = mjulian2greg(modelTime);
dates = datenum([yyyy; mm; dd; HH; MM; SS]');
serial = dates(1):dates(2);
[years, months, ~, ~, ~, ~] = datevec(serial);
99 100 101 102
[months, idx] = unique(months, 'stable');
years = years(idx);
nt = length(months);

103 104 105 106 107 108
for t = 1:nt
    month = months(t);
    year = years(t);
    if ftbverbose
        fprintf('Downloading for %04d/%02d\n', year, month)
    end
109

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    % Set up a struct of the remote locations in which we're
    % interested.
    url = 'http://nomads.ncdc.noaa.gov/thredds/dodsC/cfsr1hr/';
    ncep.dlwsfc  = [url, sprintf('%04d%02d/dlwsfc.gdas.%04d%02d.grb2', year, month, year, month)];
    ncep.dswsfc  = [url, sprintf('%04d%02d/dswsfc.gdas.%04d%02d.grb2', year, month, year, month)];
    ncep.lhtfl   = [url, sprintf('%04d%02d/lhtfl.gdas.%04d%02d.grb2', year, month, year, month)];
    ncep.prate   = [url, sprintf('%04d%02d/prate.gdas.%04d%02d.grb2', year, month, year, month)];
    ncep.pressfc = [url, sprintf('%04d%02d/pressfc.gdas.%04d%02d.grb2', year, month, year, month)];
    ncep.q2m     = [url, sprintf('%04d%02d/q2m.gdas.%04d%02d.grb2', year, month, year, month)];
    ncep.tmp2m   = [url, sprintf('%04d%02d/tmp2m.gdas.%04d%02d.grb2', year, month, year, month)];
    ncep.uswsfc  = [url, sprintf('%04d%02d/uswsfc.gdas.%04d%02d.grb2', year, month, year, month)];
    ncep.uwnd    = [url, sprintf('%04d%02d/wnd10m.gdas.%04d%02d.grb2', year, month, year, month)];
    ncep.vwnd    = [url, sprintf('%04d%02d/wnd10m.gdas.%04d%02d.grb2', year, month, year, month)];

    % We need variable names too since we can't store them as the keys in
    % ncep due to characters which MATLAB won't allow in fields (mainly -).
    names.dlwsfc = 'Downward_Long-Wave_Rad_Flux';
    names.dswsfc = 'Downward_Short-Wave_Rad_Flux';
    names.lhtfl = 'Latent_heat_net_flux';
    names.prate = 'Precipitation_rate';
    names.pressfc = 'Pressure';
    names.q2m = 'Specific_humidity';
    names.tmp2m = 'Temperature';
    names.uswsfc = 'Upward_Short-Wave_Rad_Flux';
    names.uwnd = 'U-component_of_wind';
    names.vwnd = 'V-component_of_wind';

    fields = fieldnames(ncep);

    for aa = 1:length(fields)
        % We've been given a list of variables to do, so skip those that
        % aren't in the list.
        if ~isempty(varlist) && max(strcmp(fields{aa}, varlist)) ~= 1
            continue
        end

        if ftbverbose
            fprintf('getting ''%s'' data... ', fields{aa})
        end
149

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
        data.(fields{aa}).data = [];
        data.(fields{aa}).time = [];
        data.(fields{aa}).lat = [];
        data.(fields{aa}).lon = [];

        %ncid_info = ncinfo(ncep.(fields{aa}));
        ncid = netcdf.open(ncep.(fields{aa}));

        % If you don't know what it contains, start by using the
        % 'netcdf.inq' operation:
        %[numdims, numvars, numglobalatts, unlimdimid] = netcdf.inq(ncid);
        % Time is in hours since the start of the month. We want
        % sensible times, so we'll have to offset at some point.
        varid = netcdf.inqVarID(ncid, 'time');
        data_time = netcdf.getVar(ncid, varid, 'double');
        if max(data_time) == 6
            % Precipitation data has times as 0-6 repeated for n days.
            % We need a sensible set of hours since the start of the
            % month for subsequent subsampling in time.
            data_time = 0:length(data_time) - 1;
        end

        varid = netcdf.inqVarID(ncid,'lon');
        data_lon.lon = netcdf.getVar(ncid,varid,'double');
        varid = netcdf.inqVarID(ncid,'lat');
        data_lat.lat = netcdf.getVar(ncid,varid,'double');
        % Some of the NCEP Reanalysis 2 data are 4D, but with a single
        % vertical level (e.g. uwnd, vwnd, air, rhum).
        data_level_idx = [];
        try % not all data have a 'level', so fail gracefully here.
            varid = netcdf.inqVarID(ncid, 'level');
            data_level.level = netcdf.getVar(ncid, varid, 'double');
            if length(data_level.level) > 1
                % Assume we've got rhum and we want humidity at the sea
                % surface (1013 millibars (or hPa)). As such, ZQQ must be
                % 0.0 in the FVCOM model namelist. Find the closest level
                % to pressure at 1 standard atmosphere.
                [~, data_level_idx] = min(abs(data_level.level - 1013));
188
            end
189 190 191 192 193 194
        catch
            true;
        end
        if isempty(data_level_idx) % default to the first
            data_level_idx = 1;
        end
195

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
        % Time is in hours relative to the start of the month for CFSv2.
        timevec = datevec((data_time / 24) + datenum(year, month, 1, 0, 0, 0));

        % Get the data time and convert to Modified Julian Day.
        data.time = greg2mjulian(...
            timevec(:, 1), ...
            timevec(:, 2), ...
            timevec(:, 3), ...
            timevec(:, 4), ...
            timevec(:, 5), ...
            timevec(:, 6));
        % Clip the time to the given range.
        data_time_mask = data.time >= modelTime(1) & data.time <= modelTime(end);
        data_time_idx = 1:size(data.time, 1);
        data_time_idx = data_time_idx(data_time_mask);
        if ~isempty(data_time_idx)
            data.time = data.time(data_time_mask);
        else
            % Reset the index to its original size. This is for data
            % with only a single time stamp which falls outside the
            % model time. Only reset it when the length of the
            % input time is equal to 1.
            if length(data.time) == 1
                data_time_idx = 1:size(data.time, 1);
220
            end
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
        end

        % Check the times
        %[yyyy, mm, dd, hh, MM, ss] = mjulian2greg(data.time(1))
        %[yyyy, mm, dd, hh, MM, ss] = mjulian2greg(data.time(end))
        % Get the data in two goes, once for the end of the grid (west of
        % Greenwich), once for the beginning (east of Greenwich), and then
        % stick the two bits together.
        clear index_lon index_lat
        if extents(1) < 0 && extents(2) < 0
            % This is OK, we can just shunt the values by 360.
            extents(1) = extents(1) + 360;
            extents(2) = extents(2) + 360;
            index_lon = find(data_lon.lon > extents(1) & data_lon.lon < extents(2));
        elseif extents(1) < 0 && extents(2) > 0
            % This is the tricky one. We'll do two passes to extract the
            % western chunk first (extents(1) + 360 to 360), then the
            % eastern chunk (0 - extents(2)).
            index_lon{1} = find(data_lon.lon >= extents(1) + 360);
            index_lon{2} = find(data_lon.lon <= extents(2));
        else
            % Dead easy, we're in the eastern hemisphere, so nothing too
            % strenuous here.
            index_lon = find(data_lon.lon > extents(1) & data_lon.lon < extents(2));
        end

        % Latitude is much more straightforward
        index_lat = find(data_lat.lat > extents(3) & data_lat.lat < extents(4));
        data.(fields{aa}).lat = data_lat.lat(index_lat);

        % Get the data
        if iscell(index_lon)
            data.(fields{aa}).lon = data_lon.lon(cat(1,index_lon{:}));

            varid = netcdf.inqVarID(ncid, names.(fields{aa}));

            [~, ~, dimids, ~] = netcdf.inqVar(ncid,varid);
            if length(dimids) == 4
                start = [...
                    min(index_lon{1}), ...
                    min(index_lat), ...
                    data_level_idx, ...
                    min(data_time_idx)] - 1;
                count = [...
                    length(index_lon{1}), ...
                    length(index_lat), ...
                    length(data_level_idx), ...
                    length(data_time_idx)];
            elseif length(dimids) == 3
                start = [...
                    min(index_lon{1}), ...
                    min(index_lat), ...
                    min(data_time_idx)] - 1;
                count = [...
                    length(index_lon{1}), ...
                    length(index_lat), ...
                    length(data_time_idx)];
278 279
            end

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
            data_west.(fields{aa}).(fields{aa}) = netcdf.getVar(ncid, varid, start, count, 'double');

            if length(dimids) == 4
                start = [...
                    min(index_lon{2}), ...
                    min(index_lat), ...
                    data_level_idx, ...
                    min(data_time_idx)] - 1;
                count = [...
                    length(index_lon{2}), ...
                    length(index_lat), ...
                    length(data_level_idx), ...
                    length(data_time_idx)];
            elseif length(dimids) == 3
                start = [...
                    min(index_lon{2}), ...
                    min(index_lat), ...
                    min(data_time_idx)] - 1;
                count = [...
                    length(index_lon{2}), ...
                    length(index_lat), ...
                    length(data_time_idx)];
            end
            data_east.(fields{aa}).(fields{aa}) = ...
                netcdf.getVar(ncid, varid, start, count, 'double');

            scratch.(fields{aa}).(fields{aa}).(fields{aa}) = ...
                cat(1, ...
                data_west.(fields{aa}).(fields{aa}), ...
                data_east.(fields{aa}).(fields{aa}));

            % Merge the two sets of data together
            structfields = fieldnames(data_west.(fields{aa}));
            for ii = 1:length(structfields)
                switch structfields{ii}
                    case 'lon'
                        % Only the longitude and the actual data need
                        % sticking together, but each must be done
                        % along a different axis (lon is a vector, the
                        % data is an array).
                        scratch.(fields{aa}).(structfields{ii}) = ...
                            [data_west.(fields{aa}).(structfields{ii}); ...
                            data_east.(fields{aa}).(structfields{ii})];
                    case fields{aa}
                        % This is the actual data.
                        scratch.(fields{aa}).(structfields{ii}) = ...
                            [rot90(data_west.(fields{aa}).(structfields{ii})), ...
                            rot90(data_east.(fields{aa}).(structfields{ii}))];
                    otherwise
                        % Assume the data are the same in both arrays.
                        % A simple check of the range of values in the
                        % difference between the two arrays should show
                        % whether they're the same or not. If they are,
                        % use the western values, otherwise, warn about
                        % the differences. It might be the data are
                        % relatively unimportant anyway (i.e. not used
                        % later on).
                        try
                            tdata = ...
                                data_west.(fields{aa}).(structfields{ii}) - ...
                                data_east.(fields{aa}).(structfields{ii});
                            if range(tdata(:)) == 0
                                % They're the same data
                                scratch.(fields{aa}).(structfields{ii}) = ...
                                    data_west.(fields{aa}).(structfields{ii});
                            else
                                warning({'Unexpected data field and the', ...
                                    ' west and east halves don''t match.', ...
                                    ' Skipping.'})
                            end
                        catch
                            warning({'Unexpected data field and the', ...
                                ' west and east halves don''t match.', ...
                                ' Skipping.'})
                        end
                        clearvars tdata
356 357
                end
            end
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
            clearvars data_west data_east
        else
            % We have a straightforward data extraction
            data.(fields{aa}).lon = data_lon.lon(index_lon);

            varid = netcdf.inqVarID(ncid, (fields{aa}));
            % [varname,xtype,dimids,natts] = netcdf.inqVar(ncid,varid);
            % [~, length1] = netcdf.inqDim(ncid, dimids(1))
            % [~, length2] = netcdf.inqDim(ncid, dimids(2))
            % [~, length3] = netcdf.inqDim(ncid, dimids(3))
            start = [...
                min(index_lon), ...
                min(index_lat), ...
                min(data_time_idx)] - 1;
            count = [...
                length(index_lon), ...
                length(index_lat), ...
                length(data_time_idx)];
            % The air data (NCEP version of this script) was failing
            % with a three long start and count array, so try first
            % without (to retain original behaviour for other
            % potentially unaffected variables) but fall back to
            % getting the data_level_idx one instead (should be the first
            % level).
            try
                scratch.(fields{aa}).(fields{aa}).(fields{aa}) = ...
                    netcdf.getVar(ncid,varid,start,count,'double');
            catch
                start = [...
                    min(index_lon), ...
                    min(index_lat), ...
                    data_level_idx, ...
                    min(data_time_idx)] - 1;
                count = [...
                    length(index_lon), ...
                    length(index_lat), ...
                    1, ...
                    length(data_time_idx)];
                scratch.(fields{aa}).(fields{aa}) = netcdf.getVar(ncid, varid, start, count, 'double');
397 398
            end

399 400
        end
        clearvars data_time* data_level_idx
401

402
        datatmp = squeeze(scratch.(fields{aa}).(fields{aa}));
403

404 405
        data.(fields{aa}).lon(data.(fields{aa}).lon > 180) = ...
            data.(fields{aa}).lon(data.(fields{aa}).lon > 180) - 360;
406

407 408 409 410 411 412 413
        % data.(fields{aa}).data = datatmp;
        data.(fields{aa}).data = cat(3, data.(fields{aa}).data, datatmp);
        % data.(fields{aa}).time = data.time;
        data.(fields{aa}).time = cat(1, data.(fields{aa}).time, data.time);
        % data.(fields{aa}).time = cat(1, data.(fields{aa}).time, squeeze(scratch.(fields{aa}).(fields{aa}).time));
        % data.(fields{aa}).lat = squeeze(scratch.(fields{aa}).(fields{aa}).lat);
        % data.(fields{aa}).lon = squeeze(scratch.(fields{aa}).(fields{aa}).lon);
414

415 416 417
        if ftbverbose
            if isfield(data, fields{aa})
                fprintf('done.\n')
418
            else
419
                fprintf('error!\n')
420 421
            end
        end
422
    end
423

424 425 426 427 428 429 430
    % Calculate the net long and shortwave radiation fluxes.
    if isfield(data, 'uswsfc') && isfield(data, 'dswsfc')
        data.nswsfc.data = data.uswsfc.data - data.dswsfc.data;
        data.nswsfc.time = data.uswsfc.time;
        data.nswsfc.lon = data.uswsfc.lon;
        data.nswsfc.lat = data.uswsfc.lat;
    end
431

432 433 434 435 436
    % Convert precipitation from kg/m^2/s to m/s (required by FVCOM) by
    % dividing by freshwater density (kg/m^3).
    if isfield(data, 'prate')
        data.prate.data = data.prate.data / 1000;
    end
437

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
    % Evaporation can be approximated by:
    %
    %   E(m/s) = lhtfl/Llv/rho
    %
    % where:
    %
    %   lhtfl   = "Mean daily latent heat net flux at the surface"
    %   Llv     = Latent heat of vaporization (approx to 2.5*10^6 J kg^-1)
    %   rho     = 1025 kg/m^3
    %
    if isfield(data, 'prate') && isfield(data, 'lhtfl')
        Llv = 2.5 * 10^6;
        rho = 1025; % using a typical value for seawater.
        Et = data.lhtfl.data / Llv / rho;
        data.P_E.data = data.prate.data - Et;
        % Evaporation and precipitation need to have the same sign for
        % FVCOM (ocean losing water is negative in both instances). So,
        % flip the evaporation here.
        data.Et.data = -Et;
    end
458

459 460 461 462 463 464
    % Get the fields we need for the subsequent interpolation. Find the
    % position of a sensibly sized array (i.e. not 'topo', 'rhum' or
    % 'pres').
    for vv = 1:length(fields)
        if ~isempty(varlist) && max(strcmp(fields{vv}, varlist)) ~= 1
            continue
465 466
        end

467 468 469 470 471 472
        switch fields{vv}
            % Set ii in each instance in case we've been told to only
            % use one of the three (four including pres and press)
            % alternatively gridded data.
            case {'topo', 'rhum', 'pres', 'press'}
                ii = vv;
473
                continue
474 475 476 477
            otherwise
                % We've got one, so stop looking.
                ii = vv;
                break
478
        end
479 480 481 482
    end
    data.lon = data.(fields{ii}).lon;
    data.lon(data.lon > 180) = data.lon(data.lon > 180) - 360;
    data.lat = data.(fields{ii}).lat;
483

484 485 486 487
    % Convert temperature to degrees Celsius (from Kelvin)
    if isfield(data, 'tmp2m')
        data.tmp2m.data = data.tmp2m.data - 273.15;
    end
488

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
    % Make sure all the data we have downloaded are the same shape as
    % the longitude and latitude arrays.
    for aa = 1:length(fields)
        if ~isempty(varlist) && max(strcmp(fields{aa}, varlist)) ~= 1
            % We've been given a list of variables to extract, so skip those
            % that aren't in that list
            continue
        else
            if isfield(data, fields{aa})
                [px, py] = deal(length(data.(fields{aa}).lon), length(data.(fields{aa}).lat));
                [ncx, ncy, ~] = size(data.(fields{aa}).data);
                if ncx ~= px || ncy ~= py
                    data.(fields{aa}).data = permute(data.(fields{aa}).data, [2, 1, 3]);

                    % Check everything's OK now.
504 505
                    [ncx, ncy, ~] = size(data.(fields{aa}).data);
                    if ncx ~= px || ncy ~= py
506 507 508 509
                        error('Unable to resize data arrays to match position data orientation. Are these on a different horizontal grid?')
                    else
                        if ftbverbose
                            fprintf('Matching %s data and position array dimensions\n', fields{aa})
510 511
                        end
                    end
512
                end
513 514
            else
                warning('Variable %s requested but not downloaded.', fields{aa})
515 516 517
            end
        end
    end
518 519 520 521 522 523 524 525 526 527
end
% Concatenate each year's worth of data.
for aa = 1:length(fields)
    if exist('forcing', 'var') && isfield(forcing, (fields{aa}))
        forcing.(fields{aa}).data = cat(3, forcing.(fields{aa}).data, data.(fields{aa}).data);
        forcing.(fields{aa}).time = cat(1, forcing.(fields{aa}).time, data.(fields{aa}).time);
        forcing.(fields{aa}).lon = data.(fields{aa}).lon;
        forcing.(fields{aa}).lat = data.(fields{aa}).lat;
    else
        forcing = data;
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
    end
end

% Now we have the data, we need to fix the averaging to be hourly instead
% of n-hourly, where n varies from 0 to 6. See
% http://rda.ucar.edu/datasets/ds094.1/#docs/FAQs_hrly_timeseries.html with
% the question "How can the individual one-hour averages be computed?".
fields = fieldnames(data);
for f = 1:length(fields)
    if isfield(data.(fields{f}), 'data')
        [~, ~, nt] = size(data.(fields{f}).data);
        fixed = data.(fields{f}).data;

        for t = 1:6:nt
            % Fix the next 5 hours of data. Assume 0th hour is just the
            % original data - since the formula multiplies by the n-1 hour,
            % if we want the first hour's worth of data, then the second
            % term in the formula with multiply by zero, so the formula is
            % essentially only using the first term, which is just the data
            % at n (i.e. 0).
            for n = 1:5
                if t + n <= nt
550 551 552
                    fixed(:, :, t + n) = ...
                        (n * data.(fields{f}).data(:, :, t + n)) - ...
                        ((n - 1) * data.(fields{f}).data(:, :, t + n - 1));
553 554 555
                end
            end
        end
556 557
        data.(fields{f}).data = fixed;
        clearvars fixed
558 559 560 561 562
    end
end

% Have a look at some data.
% [X, Y] = meshgrid(data.lon, data.lat);
563
% for i = 1:size(data.uwnd.data, 3)
564 565 566 567 568 569 570 571 572 573 574 575 576
%     figure(1)
%     clf
%     uv = sqrt(data.uwnd.data(:, :, i).^2 + data.vwnd.data(:, :, i).^2);
%     pcolor(X, Y, uv')
%     shading flat
%     axis('equal','tight')
%     pause(0.1)
% end

if ftbverbose
    fprintf('end   : %s\n', subname)
end