Due to a shift in policy, from 0900 GMT on Wednesday 14th July 2021, we will be disabling ssh access to the server for external users. External users who wish to continue to access code repositories on the server will need to switch to using https. This can be accomplished in the following way: 1) On the repo on gitlab, use the clone dialogue and select ‘Clone with HTTPS’ to get the address of the repo; 2) From within the checkout of your repo run: $ git remote set-url origin HTTPS_ADDRESS. Here, replace HTTPS_ADDRESS with the address you have just copied from GitLab. Pulls and pushes will now require you to enter a username and password rather than using a ssh key. If you would prefer not to enter a password each time, you might consider caching your login credentials.

Commit 007ec104 authored by Pierre Cazenave's avatar Pierre Cazenave

Add the GOTM input file.

parent bc1ae22b
!$Id: gotmturb.proto,v 1.1.1.1 2003/03/11 13:38:58 kbk Exp $
!-------------------------------------------------------------------------------
!-------------------------------------------------------------------------------
! What type of equations are solved in the turbulence model?
!
! turb_method -> type of turbulence closure
!
! 0: convective adjustment
! 1: analytical eddy visc. and diff. profiles, not coded yet
! 2: turbulence Model calculating TKE and length scale
! (specify stability function below)
! 3: second-order model (see "scnd" namelist below)
! 99: KPP model (requires "kpp.inp" with specifications)
!
!
! tke_method -> type of equation for TKE
!
! 1: algebraic equation
! 2: dynamic equation (k-epsilon style)
! 3: dynamic equation (Mellor-Yamada style)
!
!
! len_scale_method -> type of model for dissipative length scale
!
! 1: parabolic shape
! 2: triangle shape
! 3: Xing and Davies [1995]
! 4: Robert and Ouellet [1987]
! 5: Blackadar (two boundaries) [1962]
! 6: Bougeault and Andre [1986]
! 7: Eifler and Schrimpf (ISPRAMIX) [1992]
! 8: dynamic dissipation rate equation
! 9: dynamic Mellor-Yamada q^2l-equation
! 10: generic length scale (GLS)
!
!
! stab_method -> type of stability function
!
! 1: constant stability functions
! 2: Munk and Anderson [1954]
! 3: Schumann and Gerz [1995]
! 4: Eifler and Schrimpf [1992]
!
!-------------------------------------------------------------------------------
&turbulence
turb_method= 2
tke_method= 2
len_scale_method=8
stab_method= 4
/
!-------------------------------------------------------------------------------
! What boundary conditions are used?
!
! k_ubc, k_lbc -> upper and lower boundary conditions
! for k-equation
! 0: prescribed BC
! 1: flux BC
!
! psi_ubc, psi_lbc -> upper and lower boundary conditions
! for the length-scale equation (e.g.
! epsilon, kl, omega, GLS)
! 0: prescribed BC
! 1: flux BC
!
!
! ubc_type -> type of upper boundary layer
! 0: viscous sublayer (not yet impl.)
! 1: logarithmic law of the wall
! 2: tke-injection (breaking waves)
!
! lbc_type -> type of lower boundary layer
! 0: viscous sublayer (not yet impl.)
! 1: logarithmic law of the wall
!
!-------------------------------------------------------------------------------
&bc
k_ubc= 1
k_lbc= 0
psi_ubc= 0
psi_lbc= 0
ubc_type= 1
lbc_type= 1
/
!-------------------------------------------------------------------------------
!What turbulence parameters have been described?
!
! cm0_fix -> value of cm0 for turb_method=2
! Prandtl0_fix -> value of the turbulent Prandtl-number for stab_method=1-4
! cw -> constant of the wave-breaking model
! (Craig & Banner (1994) use cw=100)
! compute_kappa -> compute von Karman constant from model parameters
! kappa -> the desired von Karman constant (if compute_kappa=.true.)
! compute_c3 -> compute c3 (E3 for Mellor-Yamada) for given Ri_st
! Ri_st -> the desired steady-state Richardson number (if compute_c3=.true.)
! length_lim -> apply length scale limitation (see Galperin et al. 1988)
! galp -> coef. for length scale limitation
! const_num -> minimum eddy diffusivity (only with turb_method=0)
! const_nuh -> minimum heat diffusivity (only with turb_method=0)
! k_min -> minimun TKE
! eps_min -> minimum dissipation rate
! kb_min -> minimun buoyancy variance
! epsb_min -> minimum buoyancy variance destruction rate
!
!-------------------------------------------------------------------------------
&turb_param
cm0_fix= 0.5477
Prandtl0_fix= 0.74
cw= 100.
compute_kappa= .true.
kappa= 0.4
compute_c3= .true.
ri_st= 0.25
length_lim= .true.
galp= 0.53
const_num= 1.e-6
const_nuh= 1.e-6
k_min= 1.e-07
eps_min= 1.e-08
kb_min= 1.e-07
epsb_min= 1.e-08
/
!-------------------------------------------------------------------------------
! The generic model (Umlauf & Burchard, J. Mar. Res., 2003)
!
! This part is active only, when len_scale_method=10 has been set.
!
! compute_param -> compute the model parameters:
! if this is .false., you have to set all
! model parameters (m,n,cpsi1,...) explicitly
! if this is .true., all model parameters
! set by you (except m) will be ignored and
! re-computed from kappa, d, alpha, etc.
! (see Umlauf&Burchard 2002)
!
! m: -> exponent for k
! n: -> exponent for l
! p: -> exponent for cm0
!
! Examples:
!
! k-epsilon (Rodi 1987) : m=3/2, n=-1, p=3
! k-omega (Umlauf et al. 2003) : m=1/2, n=-1, p=-1
!
! cpsi1 -> emp. coef. in psi equation
! cpsi2 -> emp. coef. in psi equation
! cpsi3minus -> cpsi3 for stable stratification
! cpsi3plus -> cpsi3 for unstable stratification
! sig_kpsi -> Schmidt number for TKE diffusivity
! sig_psi -> Schmidt number for psi diffusivity
!
!-------------------------------------------------------------------------------
&generic
compute_param= .false.
gen_m= 1.0
gen_n= 1.0
gen_p= 0.0
cpsi1= 0.9
cpsi2= 0.5
cpsi3minus= 2.38
cpsi3plus = 1.0
sig_kpsi= 2.44
sig_psi= 2.44
gen_d= -1.
gen_alpha= -3.85
gen_l= 0.16
/
!-------------------------------------------------------------------------------
! The k-epsilon model (Rodi 1987)
!
! This part is active only, when len_scale_method=8 has been set.
!
! ce1 -> emp. coef. in diss. eq.
! ce2 -> emp. coef. in diss. eq.
! ce3minus -> ce3 for stable stratification, overwritten if compute_c3=.true.
! ce3plus -> ce3 for unstable stratification (Rodi 1987: ce3plus=1.0)
! sig_k -> Schmidt number for TKE diffusivity
! sig_e -> Schmidt number for diss. diffusivity
! sig_peps -> if .true. -> the wave breaking parameterisation suggested
! by Burchard (JPO 31, 2001, 3133-3145) will be used.
!-------------------------------------------------------------------------------
&keps
ce1= 1.44
ce2= 1.92
ce3minus= 0.0
ce3plus= 1.0
sig_k= 1.0
sig_e= 1.3
sig_peps= .false.
/
!-------------------------------------------------------------------------------
! The Mellor-Yamada model (Mellor & Yamada 1982)
!
! This part is active only, when len_scale_method=9 has been set!
!
! e1 -> coef. in MY q**2 l equation
! e2 -> coef. in MY q**2 l equation
! e3 -> coef. in MY q**2 l equation, overwritten if compute_c3=.true.
! sq -> turbulent diffusivities of q**2 (= 2k)
! sl -> turbulent diffusivities of q**2 l
! my_length -> prescribed barotropic lengthscale in q**2 l equation of MY
! 1: parabolic
! 2: triangular
! 3: lin. from surface
! new_constr -> stabilisation of Mellor-Yamada stability functions
! according to Burchard & Deleersnijder (2001)
! (if .true.)
!
!-------------------------------------------------------------------------------
&my
e1= 1.8
e2= 1.33
e3= 1.8
sq= 0.2
sl= 0.2
my_length= 1
new_constr= .true.
/
!-------------------------------------------------------------------------------
! The second-order model
!
! scnd_method -> type of second-order model
! 1: EASM with quasi-equilibrium
! 2: EASM with weak equilibrium, buoy.-variance algebraic
! 3: EASM with weak equilibrium, buoy.-variance from PDE
!
! kb_method -> type of equation for buoyancy variance
!
! 1: algebraic equation for buoyancy variance
! 2: PDE for buoyancy variance
!
!
! epsb_method -> type of equation for variance destruction
!
! 1: algebraic equation for variance destruction
! 2: PDE for variance destruction
!
!
! scnd_coeff -> coefficients of second-order model
!
! 0: read the coefficients from this file
! 1: coefficients of Gibson and Launder (1978)
! 2: coefficients of Mellor and Yamada (1982)
! 3: coefficients of Kantha and Clayson (1994)
! 4: coefficients of Luyten et al. (1996)
! 5: coefficients of Canuto et al. (2001) (version A)
! 6: coefficients of Canuto et al. (2001) (version B)
! 7: coefficients of Cheng et al. (2002)
!
!-------------------------------------------------------------------------------
&scnd
scnd_method= 2
kb_method= 1
epsb_method= 1
scnd_coeff= 5
cc1= 5.0
cc2= 0.8000
cc3= 1.9680
cc4= 1.1360
cc5= 0.0000
cc6= 0.4000
ct1= 5.9500
ct2= 0.6000
ct3= 1.0000
ct4= 0.0000
ct5= 0.3333
ctt= 0.7200
/
!-------------------------------------------------------------------------------
! The internal wave model
!
! iw_model -> method to compute internal wave mixing
! 0: no internal waves mixing parameterisation
! 1: Mellor 1989 internal wave mixing
! 2: Large et al. 1994 internal wave mixing
!
! alpha -> coeff. for Mellor IWmodel (0: no IW, 0.7 Mellor 1989)
!
! The following six empirical parameters are used for the
! Large et al. 1994 shear instability and internal wave breaking
! parameterisations (iw_model = 2, all viscosities are in m**2/s):
!
! klimiw -> critcal value of TKE
! rich_cr -> critical Richardson number for shear instability
! numshear -> background diffusivity for shear instability
! numiw -> background viscosity for internal wave breaking
! nuhiw -> background diffusivity for internal wave breaking
!-------------------------------------------------------------------------------
&iw
iw_model= 0
alpha= 0.0
klimiw= 1e-6
rich_cr= 0.7
numshear= 5.e-3
numiw= 1.e-4
nuhiw= 1.e-5
/
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment