Commit 007ec104 authored by Pierre Cazenave's avatar Pierre Cazenave
Browse files

Add the GOTM input file.

parent bc1ae22b
!$Id: gotmturb.proto,v 1.1.1.1 2003/03/11 13:38:58 kbk Exp $
!-------------------------------------------------------------------------------
!-------------------------------------------------------------------------------
! What type of equations are solved in the turbulence model?
!
! turb_method -> type of turbulence closure
!
! 0: convective adjustment
! 1: analytical eddy visc. and diff. profiles, not coded yet
! 2: turbulence Model calculating TKE and length scale
! (specify stability function below)
! 3: second-order model (see "scnd" namelist below)
! 99: KPP model (requires "kpp.inp" with specifications)
!
!
! tke_method -> type of equation for TKE
!
! 1: algebraic equation
! 2: dynamic equation (k-epsilon style)
! 3: dynamic equation (Mellor-Yamada style)
!
!
! len_scale_method -> type of model for dissipative length scale
!
! 1: parabolic shape
! 2: triangle shape
! 3: Xing and Davies [1995]
! 4: Robert and Ouellet [1987]
! 5: Blackadar (two boundaries) [1962]
! 6: Bougeault and Andre [1986]
! 7: Eifler and Schrimpf (ISPRAMIX) [1992]
! 8: dynamic dissipation rate equation
! 9: dynamic Mellor-Yamada q^2l-equation
! 10: generic length scale (GLS)
!
!
! stab_method -> type of stability function
!
! 1: constant stability functions
! 2: Munk and Anderson [1954]
! 3: Schumann and Gerz [1995]
! 4: Eifler and Schrimpf [1992]
!
!-------------------------------------------------------------------------------
&turbulence
turb_method= 2
tke_method= 2
len_scale_method=8
stab_method= 4
/
!-------------------------------------------------------------------------------
! What boundary conditions are used?
!
! k_ubc, k_lbc -> upper and lower boundary conditions
! for k-equation
! 0: prescribed BC
! 1: flux BC
!
! psi_ubc, psi_lbc -> upper and lower boundary conditions
! for the length-scale equation (e.g.
! epsilon, kl, omega, GLS)
! 0: prescribed BC
! 1: flux BC
!
!
! ubc_type -> type of upper boundary layer
! 0: viscous sublayer (not yet impl.)
! 1: logarithmic law of the wall
! 2: tke-injection (breaking waves)
!
! lbc_type -> type of lower boundary layer
! 0: viscous sublayer (not yet impl.)
! 1: logarithmic law of the wall
!
!-------------------------------------------------------------------------------
&bc
k_ubc= 1
k_lbc= 0
psi_ubc= 0
psi_lbc= 0
ubc_type= 1
lbc_type= 1
/
!-------------------------------------------------------------------------------
!What turbulence parameters have been described?
!
! cm0_fix -> value of cm0 for turb_method=2
! Prandtl0_fix -> value of the turbulent Prandtl-number for stab_method=1-4
! cw -> constant of the wave-breaking model
! (Craig & Banner (1994) use cw=100)
! compute_kappa -> compute von Karman constant from model parameters
! kappa -> the desired von Karman constant (if compute_kappa=.true.)
! compute_c3 -> compute c3 (E3 for Mellor-Yamada) for given Ri_st
! Ri_st -> the desired steady-state Richardson number (if compute_c3=.true.)
! length_lim -> apply length scale limitation (see Galperin et al. 1988)
! galp -> coef. for length scale limitation
! const_num -> minimum eddy diffusivity (only with turb_method=0)
! const_nuh -> minimum heat diffusivity (only with turb_method=0)
! k_min -> minimun TKE
! eps_min -> minimum dissipation rate
! kb_min -> minimun buoyancy variance
! epsb_min -> minimum buoyancy variance destruction rate
!
!-------------------------------------------------------------------------------
&turb_param
cm0_fix= 0.5477
Prandtl0_fix= 0.74
cw= 100.
compute_kappa= .true.
kappa= 0.4
compute_c3= .true.
ri_st= 0.25
length_lim= .true.
galp= 0.53
const_num= 1.e-6
const_nuh= 1.e-6
k_min= 1.e-07
eps_min= 1.e-08
kb_min= 1.e-07
epsb_min= 1.e-08
/
!-------------------------------------------------------------------------------
! The generic model (Umlauf & Burchard, J. Mar. Res., 2003)
!
! This part is active only, when len_scale_method=10 has been set.
!
! compute_param -> compute the model parameters:
! if this is .false., you have to set all
! model parameters (m,n,cpsi1,...) explicitly
! if this is .true., all model parameters
! set by you (except m) will be ignored and
! re-computed from kappa, d, alpha, etc.
! (see Umlauf&Burchard 2002)
!
! m: -> exponent for k
! n: -> exponent for l
! p: -> exponent for cm0
!
! Examples:
!
! k-epsilon (Rodi 1987) : m=3/2, n=-1, p=3
! k-omega (Umlauf et al. 2003) : m=1/2, n=-1, p=-1
!
! cpsi1 -> emp. coef. in psi equation
! cpsi2 -> emp. coef. in psi equation
! cpsi3minus -> cpsi3 for stable stratification
! cpsi3plus -> cpsi3 for unstable stratification
! sig_kpsi -> Schmidt number for TKE diffusivity
! sig_psi -> Schmidt number for psi diffusivity
!
!-------------------------------------------------------------------------------
&generic
compute_param= .false.
gen_m= 1.0
gen_n= 1.0
gen_p= 0.0
cpsi1= 0.9
cpsi2= 0.5
cpsi3minus= 2.38
cpsi3plus = 1.0
sig_kpsi= 2.44
sig_psi= 2.44
gen_d= -1.
gen_alpha= -3.85
gen_l= 0.16
/
!-------------------------------------------------------------------------------
! The k-epsilon model (Rodi 1987)
!
! This part is active only, when len_scale_method=8 has been set.
!
! ce1 -> emp. coef. in diss. eq.
! ce2 -> emp. coef. in diss. eq.
! ce3minus -> ce3 for stable stratification, overwritten if compute_c3=.true.
! ce3plus -> ce3 for unstable stratification (Rodi 1987: ce3plus=1.0)
! sig_k -> Schmidt number for TKE diffusivity
! sig_e -> Schmidt number for diss. diffusivity
! sig_peps -> if .true. -> the wave breaking parameterisation suggested
! by Burchard (JPO 31, 2001, 3133-3145) will be used.
!-------------------------------------------------------------------------------
&keps
ce1= 1.44
ce2= 1.92
ce3minus= 0.0
ce3plus= 1.0
sig_k= 1.0
sig_e= 1.3
sig_peps= .false.
/
!-------------------------------------------------------------------------------
! The Mellor-Yamada model (Mellor & Yamada 1982)
!
! This part is active only, when len_scale_method=9 has been set!
!
! e1 -> coef. in MY q**2 l equation
! e2 -> coef. in MY q**2 l equation
! e3 -> coef. in MY q**2 l equation, overwritten if compute_c3=.true.
! sq -> turbulent diffusivities of q**2 (= 2k)
! sl -> turbulent diffusivities of q**2 l
! my_length -> prescribed barotropic lengthscale in q**2 l equation of MY
! 1: parabolic
! 2: triangular
! 3: lin. from surface
! new_constr -> stabilisation of Mellor-Yamada stability functions
! according to Burchard & Deleersnijder (2001)
! (if .true.)
!
!-------------------------------------------------------------------------------
&my
e1= 1.8
e2= 1.33
e3= 1.8
sq= 0.2
sl= 0.2
my_length= 1
new_constr= .true.
/
!-------------------------------------------------------------------------------
! The second-order model
!
! scnd_method -> type of second-order model
! 1: EASM with quasi-equilibrium
! 2: EASM with weak equilibrium, buoy.-variance algebraic
! 3: EASM with weak equilibrium, buoy.-variance from PDE
!
! kb_method -> type of equation for buoyancy variance
!
! 1: algebraic equation for buoyancy variance
! 2: PDE for buoyancy variance
!
!
! epsb_method -> type of equation for variance destruction
!
! 1: algebraic equation for variance destruction
! 2: PDE for variance destruction
!
!
! scnd_coeff -> coefficients of second-order model
!
! 0: read the coefficients from this file
! 1: coefficients of Gibson and Launder (1978)
! 2: coefficients of Mellor and Yamada (1982)
! 3: coefficients of Kantha and Clayson (1994)
! 4: coefficients of Luyten et al. (1996)
! 5: coefficients of Canuto et al. (2001) (version A)
! 6: coefficients of Canuto et al. (2001) (version B)
! 7: coefficients of Cheng et al. (2002)
!
!-------------------------------------------------------------------------------
&scnd
scnd_method= 2
kb_method= 1
epsb_method= 1
scnd_coeff= 5
cc1= 5.0
cc2= 0.8000
cc3= 1.9680
cc4= 1.1360
cc5= 0.0000
cc6= 0.4000
ct1= 5.9500
ct2= 0.6000
ct3= 1.0000
ct4= 0.0000
ct5= 0.3333
ctt= 0.7200
/
!-------------------------------------------------------------------------------
! The internal wave model
!
! iw_model -> method to compute internal wave mixing
! 0: no internal waves mixing parameterisation
! 1: Mellor 1989 internal wave mixing
! 2: Large et al. 1994 internal wave mixing
!
! alpha -> coeff. for Mellor IWmodel (0: no IW, 0.7 Mellor 1989)
!
! The following six empirical parameters are used for the
! Large et al. 1994 shear instability and internal wave breaking
! parameterisations (iw_model = 2, all viscosities are in m**2/s):
!
! klimiw -> critcal value of TKE
! rich_cr -> critical Richardson number for shear instability
! numshear -> background diffusivity for shear instability
! numiw -> background viscosity for internal wave breaking
! nuhiw -> background diffusivity for internal wave breaking
!-------------------------------------------------------------------------------
&iw
iw_model= 0
alpha= 0.0
klimiw= 1e-6
rich_cr= 0.7
numshear= 5.e-3
numiw= 1.e-4
nuhiw= 1.e-5
/
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment